
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Parallel FPGA Routers with Lagrange
Relaxation
ROHIT AGRAWAL1§, KAPIL AHUJA2§, DHAARNA MAHESHWARI2, MOHD UBAID SHAIKH2,
MOHAMED BOUAZIZ3, AND AKASH KUMAR4 (Senior Member, IEEE)
1Computer Science & Engineering, Madhav Institute of Technology & Science, Gwalior 474005, MP, India; (e-mail: agarwal0115@gmail.com)
2Math of Data Science & Simulation (MODSS) Lab, Computer Science & Engineering, Indian Institute of Technology Indore, Simrol 453552, MP, India; (e-mail:
kahuja@iiti.ac.in (K. A.); dhaarna1999@gmail.com (D. M.); shaikhubaid769@gmail.com (M. U. S.))
3Tunisia Polytechnic School, La Marsa 1053, Tunisia; mohamed.bouaziz@kaust.edu.sa
4Center for Advancing Electronics, Technische Universität Dresden, Dresden 01062, Germany; akash.kumar@tu-dresden.de
§ Rohit Agrawal and Kapil Ahuja are equal contributors to this work and designated as co-first authors.
Corresponding author: Akash Kumar (e-mail: akash.kumar@tu-dresden.de).

This work is supported in part by the German Academic Exchange Service (DAAD), Germany for support under the bilateral exchange of
academics program with grant number 91651117.

ABSTRACT Routing of the nets in Field Programmable Gate Array (FPGA) design flow is one of the most
time consuming steps. Although Versatile Place and Route (VPR), which is a commonly used algorithm
for this purpose, routes effectively, it is slow in execution. One way to accelerate this design flow is to
use parallelization. Since VPR is intrinsically sequential, a set of parallel algorithms have been recently
proposed for this purpose (ParaLaR and ParaLarPD). These algorithms formulate the routing process as
a Linear Program (LP) and solve it using the Lagrange relaxation, an adapted sub-gradient method, and
a Steiner tree algorithm. When tested on the MCNC benchmark circuits, using underlying VPR 7.0 for
packing and placement, ParaLaR and ParaLarPD both outperformed VPR 7.0 for routing, with ParaLarPD
being better.
We have three main contributions here. Recently, in 2020, a new variant of VPR, i.e. VPR 8.0, has been
proposed. Hence, first, we make ParaLarPD compatible for testing on MCNC benchmark circuits using
VPR 8.0. Second, we adapt ParaLarPD for the larger benchmark circuits than MCNC, i.e., VTR, using both
VPR 7.0 and VPR 8.0, and perform thorough evaluation. Finally, and third, we improve ParaLarPD further.
We design a family of Lagrange heuristics that better the Lagrange relaxation process of ParaLarPD. We
term our new algorithm ParaLarH and test it on both the benchmark circuits (MCNC and VTR) and using
both the VPRs (VPR 7.0 and VPR 8.0).
When tested on MCNC and VTR benchmark circuits, VPR (VPR 7.0 and VPR 8.0) is outperformed by both
ParaLarH and ParaLarPD, with average gains given below. The minimum channel width improvements are
22% and 12%, respectively. The total wire length improvements for both are 45%. Finally, the average
critical path delay improvements for both are almost the same (37% and 35%, respectively).

INDEX TERMS FPGA, Lagrangian Heuristics, LP, Optimization, Subgradient Methods.

I. INTRODUCTION

The Electronic Design Automation (EDA) process has been
the single biggest factor behind the thriving of the semicon-
ductor industry in the last fifty years. However, it is very time
consuming with routing taking a big percentage of this time.
In this paper, we focus on a large subset of this problem,
i.e. the expensive Field Programmable Gate Array (FPGA)
[1], [2] routing process. FPGA routing is computationally
expensive because the common standard algorithm to per-
form routing, i.e., Versatile Place and Route (VPR [3]) is

intrinsically slow. One way to accelerate routing is to exploit
parallelization capabilities of the modern High Performance
Computing (HPC) machines. Since VPR is fundamentally
sequential, new parallel routing algorithms need to be devel-
oped.

One of the first attempts in parallelizing this routing pro-
cess was done in [4]. Here, the authors formulated the prob-
lem as a Binary Integer Linear Program (BILP), applied the
Lagrange relaxation to eliminate constraints, and then solved
the resulting optimization problem using the sub-gradient

VOLUME 4, 2016 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

method and a Steiner tree algorithm. The final algorithm was
termed as ParaLaR. When tested on the MCNC [5] bench-
mark circuits using underlying VPR*, ParaLaR substantially
outperformed VPR.

In one of our recent works [6], we substantially improved
the constraints violation drawback of ParaLaR. We achieved
this by developing a more problem specific version of the
sub-gradient method and fine tuning the size of its iterative
step. The final algorithm was termed as ParaLarPD. When
again tested on the MCNC [5] benchmark circuits using
underlying VPR, ParaLarPD gave bigger gains over VPR as
compared to the gain given by ParaLaR over VPR.

We have three fold contribution in this work.

1) Recently (in 2020), a new variant of VPR has been
proposed. That is, VPR 8.0. Since earlier, we have
tested ParaLarPD on MCNC benchmark circuits using
only VPR 7.0. We now take a step further and make
ParaLarPD compatible for testing on same circuits but
while using VPR 8.0. As mentioned earlier, VPR is used
to pack and place before routing as well as is compared
against.

2) Earlier, we have experimented with ParaLarPD only on
the MCNC benchmark circuits, which are considered
small. Hence, we adapt ParaLarPD for larger benchmark
circuits of VTR as well. We give thorough results for
both VPR 7.0 and 8.0.

3) Although ParaLarPD reduced the constraints violation
of ParaLaR, it did not completely eliminate it. Hence,
we also design a family of Lagrange heuristics to im-
prove the Lagrange relation process in-turn reducing the
constraints violation in ParaLarPD further. We term our
new algorithm as ParaLarH. We evaluate ParaLarH on
both the benchmark circuits (MCNC and VTR) when
using both the VPRs (VPR 7.0 and VPR 8.0).

When experimented on MCNC and VTR benchmarks, the
average gains over VPR 7.0 and VPR 8.0 are as follows.

• The minimum channel width: ParaLarH and ParaLarPD
achieve 21.72% and 12.24% improvements, respec-
tively.

• The total wire length: ParaLarH and ParaLarPD achieve
44.89% and 44.67% improvements, respectively.

• The average critical path delay: ParaLarH and Par-
aLarPD achieve 37.37% and 35.18% improvements,
respectively.

As evident above, ParaLarH and ParaLarPD both perform
well with ParaLarH being better. Extra work done in de-
signing the Lagrange heuristics in ParaLarH leads to slight
increase in total running time as compared to ParaLarPD.
This can be offsetted by running code in parallel. A parallel
code would lead to faster ParaLarPD as well but ParaLarPD
would not be able to improve other routing metrics as above.

*Besides being a routing algorithm, VPR is also used to pack and place
before other routing algorithms are applied

The rest of this paper has four more sections. In Section II,
we present the ParaLarPD algorithm from [6]. Our Lagrange
heuristic, its variants, and the resulting algorithm of Par-
aLarH are discussed in Section III. In Section IV, we present
the experimental results. Finally, conclusions and future work
are given in Section V.

II. BACKGROUND
The routing problem in FPGA or a electronic circuit is
formulated as a weighted grid graph G(V,E), where V and
E are the sets of certain vertices and edges, respectively, and
there is a cost associated with each edge [4], [6]. In this grid
graph, we have three types of vertices; the net vertices, a
Steiner vertices, and the other vertices. A net is represented
as a set N ⊆ V consisting of net vertices with other types of
vertices playing a supporting role.

Here, the goal is to find a route for each net such that the
union of all the routes will minimize the total path cost of
the graph G, which is directly proportional to the total wire
length of FPGA. To achieve this objective, the problem of
routing of nets is formulated as an LP problem given by [4]
(ParaLaR paper).

min
xe,i

Nnets∑
i=1

∑
e∈E

wexe,i, (1)

Subject to Aixi = bi, i = 1, 2, ..., Nnets, (2a)
xe,i = 0 or 1, and (2b)
Nnets∑
i=1

xe,i ≤ W, ∀e ∈ E (2c)

with meaning of each variable is given in Table 1. The
equality constraints guarantee that a valid route is formed
for each net (these are implicitly satisfied by our solution).
The inequality constraints are the channel width constraints
that restrict the number of nets utilizing an edge to W.
These constraints also relate to our other complementary
requirement, that is, the minimization of the channel width of
each edge (achieved by an iterative reduction in the solution
process).

TABLE 1: Summary of the symbols with their meanings as
used in LP (1)-(2c).

Symbols Meaning
xe,i The binary decision variables that can have value either 0 (if

net i does not utilize an edge e) or 1 (if net i utilizes an edge e)
Nnets The number of nets
E The set of edges with e denoting one such edge
we The cost/ time delay associated with the edge e
W A constant (input and iteratively reduced)
Ai The node-arch incidence matrix (the constraints matrix of the

minimum cost flow problem)
xi The vector of all xe,i that represents the route of

the ith net
bi The demand/ supply vector, which signifies the amount of

cost flow to the ith net

The inequality constraints need to be relaxed or eliminated.
This is because they introduce dependencies between the

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

routing of different nets leading to the difficulty in solving
the LP in a parallel manner. The Lagrange relaxation [7]
is a technique where the constraints can be eliminated by
integrating them into the objective function. This introduces
Lagrange multipliers λe for each constraint, with relaxation
carried out by adding λe times the corresponding constraint
to the objective function. That is, instead of the LP given in
(1)-(2c), we have the following [4] (again ParaLaR paper):

min
xe,i, λe

(
Nnets∑
i=1

∑
e∈E

(we + λe)xe,i −W
∑
e∈E

λe

)
, (3)

Subject to Aixi = bi, i = 1, 2, ..., Nnets, (4a)
xe,i = 0 or 1 and (4b)
λe ≥ 0. (4c)

In the above LP, (we + λe) is the new cost associated with the
edge e. As earlier, this LP can be easily solved in a parallel
manner.

In (3)–(4c), we have two sets of variables xe,i and λe.
Since the decision variables xe,i can have values either 0 or 1,
and λe ∈ R (or real line), this LP is a Binary Integer Linear
Program (BILP) that is non-differentiable [8]–[11]. Hence,
the traditional methods such as the Simplex method [12], the
interior point method [13], etc. fail here. The sub-gradient
based methods [14], [15] are iterative methods for solving
optimization problems [16]–[18] without stringent differen-
tiability requirements. In these methods, the variable (say
x) is updated as xk+1 = xk − αkgk, where αk is the step
size, gk is a sub-gradient of the objective function, and the
superscript (k or k+1) denotes the iteration number. Since a
sub-gradient based algorithm will not give binary solutions,
which we need (recall xe,i can be 0 or 1), we use it to compute
the Lagrange multipliers λe only. For solving xe,i, we use a
minimum Steiner tree algorithm.

There are many variants of the sub-gradient based methods
available such as the projected method [14], the primal–
dual method [19], the conditional method [20], the deflected
method [20], etc. In our ParaLarPD algorithm [6], which as
earlier improved the ParaLaR algorithm [4], we demonstrated
the superiority of using the primal–dual method with compu-
tation of the Lagrange multipliers done as below.

λk+1
e = λk

e + αk max

(
0,

Nnets∑
i=1

xe,i −W

)
, (5)

where
∑N

i=1 xe,i − W is a sub-gradient of the objective
function at the kth iteration–the partial derivative of the
objective function in (3). Also λ0

e is taken as zero for all
edges.

In our ParaLarPD paper [6], we also proposed a new step
size updation strategy that works better than the correspond-
ing technique proposed in the ParaLaR paper [4]. That is,

αk = (1/k) /
∥∥T k

∥∥
2
, (6)

where k is the iteration number, T k is the Karush–Kuhn–
Tucker (KKT) operator of the objective function (3), and∥∥T k

∥∥
2

is the 2-norm of T k.
Next, a minimum Steiner tree algorithm [21] is used to

compute xe,i. Here, the input is a set S that contains the
net vertices. The intermediate goal is to compute the set of
Steiner vertices for S, which is initially empty (say U ). The
algorithm begins by forming a triple of vertices from S. Next,
a possible candidate Steiner vertex is found such that the
total path cost from the vertices in the triple to the candidate
vertex is minimized. This process is repeated for all the sets
of triples to find the possible Steiner vertices, out of which
U is formed. Finally, the union of S and U is obtained using
the minimum spanning tree algorithm leading to a minimum
Steiner tree. The edges that are used in this tree have xe,i = 1
and all other edges have xe,i = 0.

After one complete iteration of the primal–dual sub-
gradient algorithm as well as a Steiner tree algorithm, the
value of W is reduced and these steps are repeated. This helps
us obtain a better local minima both for the total wire length
and the channel width. For easy reference the pseudo code of
ParaLarPD, as published in [6], is given in Algorithm 1.

Algorithm 1 ParaLarPD [6]
Input: Architecture description file and benchmark file.
Output: Route edges.
1: Run VPR with the input architecture and benchmark circuit.
2: steiner_points← ∅
3: grid_graph← InitGridGraph()
4: λe = 0, ∀e ∈ E
5: for iter = 1 to max_iter do
6: Calculate the step size α using (6).
7: route_edges← ∅
8: parallel_for i = 1 to Nnets do
9: points←

{
p : p ∈ {source and sinks of ith net}

}
10: if iter == 1 then
11: steiner_points[ith net]←

Min_Span_Tree(grid_graph, points)
12: end if
13: route_edges[ithnet]←

Min_Span_Tree(grid_graph, steiner_points[
ith net] ∪ points)

14: end parallel_for
15: while e ∈ E do
16: Update Lagrangian relaxation multipliers λe using the

Equation (5).
17: Update the edge weight of the grid_graph on

route_edge. New edge weights are we + λe.
18: end while
19: end for

III. PROPOSED APPROACH
As mentioned earlier, in our proposed work we first perform
FPGA routing using our ParaLarPD. Since some constraints
are often violated by the obtained solution, second, we de-
velop a heuristic that converts the infeasible solution to a
feasible one (i.e. tackle the issue of the constraints violation),
which is discussed next.

This technique has been applied successfully in many
domains [22]–[27]. For example, [22] solves a multi-plant

VOLUME 4, 2016 3



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

A B C D

E F G H

4345

32

29

25 34

32

42

10

18

FIGURE 1: A sub-graph to demonstrate working of our
heuristic strategy.

lot-sizing problem. Here, the authors formulate an LP to min-
imize the production costs with the demand and the capacity
constraints. The constraints are relaxed by introducing the
Lagrangian multipliers. A novel Lagrangian heuristic (in the
form of two feasibility stages) is applied to every solution
obtained while solving for the multipliers. The first feasibility
stage consists of a local search in which the production lots
are transferred amongst the time periods to ensure feasible
solutions. The second feasibility stage is also a local search
based strategy, however, in this, viable solutions are explored
by transferring the production batches to not only the differ-
ent time periods but to the different plants as well.

Another example is [23] where assignment of the students
to the classes (based upon their preferences) is formulated as
a graph partitioning problem with the capacity constraints.
This problem is further modeled as a Quadratic Program
(QP), and similar to [22], the constraints are relaxed by
introducing Lagrange multipliers, which are solved by the
sub-gradient method. As expected, the obtained solutions are
not necessarily feasible, and hence, a Lagrange heuristic is
built. In this, the constraints violation are assigned probabil-
ities based upon certain characteristics of the solution. The
algorithm is again iterated with the new probability based
information.

Our basic Lagrangian heuristic to remove the constraints
violation in ParaLarPD consists of the five steps as below.
Here, we initially explain these steps using the example
shown in Figure 1, and then in the form of an algorithm. In
this example, the channel widths as computed by ParaLarPD
are written next to the corresponding edge in the figure. Since
W is taken as forty, we have three edges where the constraints
violation occur. That is AE, BF, and DH that are highlighted
in bold in Figure 1.

1) Pick an edge with the constraints violation, and find
a new alternate path between the nodes of this edge
using any path finding algorithm. There may be many
alternative paths possible so pick any one. If the new
path contains an edge that already has the constraints
violation, then drop it and move to the next alternative

path.
For example here, without loss of generality, the edge
picked is BF and the first alternate path chosen is
BA → AE → EF . Since this path contains the edge
AE, which violates the constraints, and hence, we drop
it and pick the next possible path (BC → CG → GF )
where no such violation occurs.

2) Next, compute the available capacity of each edge in
the new path to route more nets without the constraints
violation. Minimum of these capacities is termed as
Threshold, and used further. Mathematically,

Threshold = min(W −
Nnets∑
i=1

xek,i)

∀k ∈ {edges in the new path}.
For our example, the value of Threshold is 8.

3) Calculate the amount of violation d =
∑Nnets

i=1 xe,i −
W for the edge under consideration e. Further, calculate
the number of nets where the constraints violating edge
needs to be replaced by the selected new path. This is
computed as

q = min(Threshold, d) (7)

so that no edge in the added new path has the constraints
violation.
For the edge under consideration (BF), d = 43−40 = 3,
and hence, q = min(8, 3) = 3.

4) Finally, replace this edge under consideration with the
selected path in q number of nets.
In this example, this corresponds to replacing BF with
BC → CG → CF in 3 nets.

5) If in (7) above, Threshold < d, then we would have
not completely eliminated the constraints violation in
the edge under-consideration. In this case, the search for
the alternate path needs to resumed from the start until
the violation is completely eliminated or no such path
exists.

We repeat the above steps for all the edges that are violat-
ing the constraints. This violation is directly related to the
minimum channel width (discussed earlier), i.e. we improve
this requirement as well. Algorithm 2 describes our heuristic
design in an algorithmic form. The points above map to the
respective line numbers in the algorithm, which is termed as
ParaLarH. For enhanced clarity, we describe ParaLarH via a
data flow diagram as well (in Figure 2).

A. OTHER VARIATIONS OF OUR HEURISTIC
Next, we discuss some variants of ParaLarH. As mentioned
earlier, these variations are designed to help reduce the
constraints violation further, however, they do negligibly
increase the computational cost of the overall algorithm.

(i) The first variant is based upon the fact that there may
exist multiple paths between any two end points, and
in Step 1 above we should pick the one that gives the
best results. Hence, instead of picking just one path

4 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 2 Heuristic Design
Input: Set of nets and edges that are being used; and the decision
variables determined by ParaLarPD algorithm.
Output: Updated set of nets and edges that are being used.

for (each edge e ∈ E) do
while (d =

∑Nnets
i=1 xe,i −W ≥ 0) do

1) Find a path using any path finding algorithm p :
e1e2 · · · er−1er between the end points of the edge e
such that

e1.start = e.start,

ej .end = ej+1.start ∀j ∈ {1, 2, . . . , r − 1},
er.end = e.end,
Nnets∑
i=1

xej ,i ≤W ∀j ∈ {1, 2, . . . , r},

If there is no such alternative path available for the
current constraint violating edge, then break.

2) Compute

Threshold = min(W −
Nnets∑
i=1

xek,i) ∀k ∈ {1, 2, . . . , r}.

3) Calculate q = min(Threshold, d).
4) If Nete = {N1

nets, N
2
nets, . . . , N

t
nets} denotes the

t nets where edge e is used. Replace e with path
e1e2 · · · er in q such nets. Usually t > q.

// The Point 5 as discussed in text maps to the while
statement above.

end while
end for

randomly, we pick β number of paths. Further, we
perform Steps 1, 2 and 3 for all these β paths.

(ii) In the second variant, in Step 4 above we begin by
sorting the t nets where the edge under consideration e is
used. This sorting is done in the increasing order of the
number of new edges that get added to each net while
eliminating e. Then, we replace e with the new path
in the first q nets ensuring minimization of the overall
constraints violation.

The results obtained by our basic heuristic and the above
variants are approximately the same. Therefore, in the next
section, without the loss of generality, we present the results
for the second variant.

IV. EXPERIMENTAL RESULTS
We perform experiments on a machine with single Intel(R)
Xeon(R) CPU E5-1620 v3 CPU running at 3.50 GHz and
64 GB of RAM. We use the Ubuntu 20.04.1 LTS operating
system with kernel version 5.13.0–40. Our code is written
in C++11 and compiled using GCC version 9.4.0 with O3
optimization flag. The resulting compiled code is run using a
different number of threads.

The architecture parameters used for our experiments are
given in Table 2, which are most commonly used [28]–[30].
In Table 2, the values of N and K specify that the CLBs in the
architecture contains ten fracturable logic elements (FLEs)

Run ParaLarPD 
(as given in Algorithm 1)

Edge 
 Violating the
Constraints?

Use Algorithm 2

Start

End

Input
Benchmark file
Architecture file

Netlist file

    Output
Routed Nets, i.e. 

Channel Width
Wire Length

Critical Path Delay

Update the Set of
Edges and Nets

End of ParaLarPD
Iterations?

Yes

Yes No

No

FIGURE 2: Data flow diagram of our ParaLarH.

TABLE 2: FPGA design architecture parameters used in our
experiments.

N K Fcin Fcout Fs Length
10 6 0.15 0.10 3 4

and each FLE has six inputs, respectively. The values of Fcin

and Fcout specify that every input and output pin is driven
by 15% and 10%, of the tracks in a channel, respectively. In
FPGA terminology, the value of Fs specifies the number of

VOLUME 4, 2016 5



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

wire segments that can be connected to each wire segment
where horizontal and vertical channels intersect. This value
can only be a multiple of 3. Here, we perform experiments
with Fs = 3. The value of length specifies the number of
logic blocks spanned by each segment. We took this as 4,
although our proposed method can be used for architectures
with varying lengths, e.g., length = 1 or a mix of length = 1
and length = 4.

For parallelization, we use Intel threading building blocks
(TBB) libraries. Also, in our proposed model, routing of
individual nets is independent and we update the cost of
utilizing the edges at the end of each routing iteration. Thus,
there is no race condition leading to no randomness. Hence,
our executions are deterministic. To have a less biased timing
data, we perform 100 independent runs of each of the algo-
rithms and report aggregate results.

There is no general rule of choosing the initial value
of the channel width for experimental purposes. However,
a value of 20% to 40% more than the minimum channel width
obtained from VPR is commonly used. For our experiments,
all algorithms are initialized with initial channel width (W )
as 1.2Wmin, where Wmin is the minimum channel width
obtained from VPR. We also do experiments with initial
W as 1.4Wmin, which does not change the results. We use
an upper limit of 50 for the number of iterations for all
the methods. The best results out of all these iterations are
reported.

We perform four sets of experiments:
• First, on the MCNC benchmarks when VPR 7.0 is used

to pack and place.
• Second, again on the MCNC benchmarks when VPR 8.0

is used.
• Third, on the VTR benchmarks when VPR 7.0 is used.
• Fourth and finally, again on the VTR benchmarks when

VPR 8.0 is used.

A. EXPERIMENTS ON MCNC BENCHMARKS
The experiments on MCNC benchmark circuits using VPR
7.0 and VPR 8.0 are given in the two subsections below.

1) Using VPR 7.0
We compare ParaLarH with two earlier algorithms of the
same family (ParaLarPD [6] and ParaLaR [4]), two other
standard algorithms (RVPack [30] and GGAPack2 [30]), and
VPR 7.0. Initially circuits are packed and placed using VPR
7.0, and then routing is performed by the respective method.

The algorithms are compared wing the metrics of absolute
constraints violation, minimum channel width, the total wire
length, average critical path delay, and speed-ups.

In Table 3, we compare the constraints violation of Par-
aLarH, ParaLarPD and ParaLaR. Note that there is no viola-
tion in RVPack, GGAPack2, and VPR 7.0. As evident from
this table, ParaLarH has the least constraints violation, and
hence, performs the best.

In Table 4, we compare the minimum channel width of
all the six algorithms stated earlier (ParaLarH, ParaLarPD,

ParaLaR, RVPack, GGAPack2, and VPR 7.0). As evident
from the table, ParaLarH performs the best with 32.68%
improvement over VPR 7.0.

In Table 5, we compare the total wire length, again of
all the six algorithms. As evident from the table, ParaLarH
performs a close third best here with ParaLarPD performing
best. All three: ParaLarH, ParaLarPD, and ParaLaR achieve
approximately 46% improvement over VPR 7.0.

Finally, in Table 6, we compare the average critical path
delay, again of all the six algorithms. As evident from the
table, here as well ParaLarH performs the best with 10.01%
improvement over VPR 7.0.

TABLE 3: Comparison of the constraints violation between
our proposed ParaLarH, ParaLarPD [6] and ParaLaR [4]
when experimenting on MCNC benchmarks using VPR 7.0.

Benchmarks
Circuits ParaLarH ParaLarPD ParaLaR

Alu4 4.67 5.54 15.27
Apex2 5.12 10.08 28.06
Apex4 1.87 5.58 13.48
Bigkey 5.18 9.04 13.27
Clma 5.32 16.44 31.00
Des 5.40 11.17 20.10
Diffeq 2.67 7.52 19.23
Dsip 4.86 5.63 12.33
Elliptic 5.20 12.42 36.00
Ex5p 4.78 8.83 17.00
Ex1010 4.23 8.31 20.00
Frisc 6.45 13.71 51.38
Misex3 4.56 7.27 13.67
Pdc 4.34 8.67 26.00
S298 4.87 9.00 16.29
S38417 5.34 10.48 32.00
Seq 4.68 8.85 19.00
Spla 4.92 9.41 24.33
Tseng 4.87 9.65 11.67
Average 4.70 9.35 22.11

Next, we calculate the relative speed-ups by the formula
given below [6].

Speedup =
Execution time with 1 thread
Execution time with n threads

.

The speed-ups obtained in executing the benchmarks via
ParaLarH in a parallel setting are given as a bar graph in
Figure 3. In this figure, on the x-axis we have the benchmark
circuits arranged in the increasing order of their execution
time when running them with one thread. This time is directly
proportional to the benchmark size. On the y-axis, we have
the speed-ups in execution of these benchmark circuits when
using 2 threads, 4 threads, and 8 threads in ParaLarH. From
this bar graph, we observe that on an average, 2, 4, and 8
threads give speed-ups of 1.70, 2.28, and 2.89, respectively.

Since in ParaLarPD paper [6], the experiments were per-
formed on a machine having different operating system, GCC
version, and kernel, hence, for a fair comparison, we also
perform ParaLarPD’s and ParaLaR’s experiment on the same
machine and report the speed-ups obtained by a bar graph in
Figure 4 and Figure 5, respectively. From this bar graph, we
observe that on an average, 2, 4, and 8 threads give speed-
ups of 1.84, 2.60, and 3.27, respectively for ParaLarPD and

6 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4: Comparison of the minimum channel width between our proposed ParaLarH, ParaLarPD [6], ParaLaR [4],
RVPack [30], GGAPack2 [30], and VPR 7.0 [3] when experimenting on MCNC benchmarks using VPR 7.0.

Benchmarks
Circuits ParaLarH ParaLarPD ParaLaR RVPack† GGAPack2† VPR

Alu4 34.67 35.54 45.27 49 52 48
Apex2 45.12 50.08 68.06 50 59 64
Apex4 41.87 45.58 53.48 59 60 62
Bigkey 15.18 19.04 23.27 34 38 50
Clma 70.32 81.44 96.00 78 100 94
Des 25.40 31.17 40.10 34 43 40
Diffeq 32.67 37.52 49.23 31 41 54
Dsip 24.86 25.63 32.33 30 38 38
Elliptic 50.20 57.42 81.00 53 60 74
Ex5p 44.78 48.83 57 .00 61 60 70
Ex1010 59.23 63.31 75.00 61 83 82
Frisc 61.45 68.71 106.38 61 78 86
Misex3 39.56 42.27 48.67 49 50 58
Pdc 69.34 73.67 91.00 85 90 92
S298 34.87 39 46.29 62 58 48
S38417 45.34 50.48 72.00 49 78 64
Seq 44.68 48.85 59.00 50 59 70
Spla 54.92 59.41 74.33 70 79 80
Tseng 34.87 39.65 41.67 29 29 58
Average 43.65 48.29 61.06 52.37 60.79 64.84
% improvement
over VPR 7.0 32.68 25.52 5.84 19.24 6.25 –

† Note: Original thesis has provided data for these algorithms only in graphical format. Also, the code and
pseudo-code for these algorithms is unavailable and so we are unable to generate results for individual
circuits. Hence, we report the approximate values as read from the bar graphs.

TABLE 5: Comparison of the total wire length (in nanometers) between our proposed ParaLarH, ParaLarPD [6], ParaLaR [4],
RVPack [30], GGAPack2 [30], and VPR 7.0 [3] when experimenting on MCNC benchmarks using VPR 7.0.

Benchmarks
Circuits ParaLarH ParaLarPD ParaLaR RVPack† GGAPack2† VPR

Alu4 5030 5030 5029 16500 16700 10480
Apex2 7978 7935 7934 18700 20100 15881
Apex4 5807 5630 5632 15600 16200 10746
Bigkey 3927 3896 3896 19400 20100 7052
Clma 49474 49278 49284 100000 130200 87398
Des 7043 6952 6952 21000 29000 14739
Diffeq 4693 4349 4350 9400 10100 9140
Dsip 4771 4778 4778 18300 19900 9742
Elliptic 15253 15125 15124 29900 39000 28271
Ex5p 4916 4889 4881 10200 10600 10169
Ex1010 23603 23596 23950 49900 70100 43919
Frisc 19713 19484 19484 38200 49800 35664
Misex3 5195 5194 5192 11400 12300 10061
Pdc 30435 30423 30425 61300 78500 53661
S298 5256 5250 5250 17800 19100 10291
S38417 21962 21907 21906 42900 78100 42597
Seq 7685 7654 7653 18900 19900 14203
Spla 20139 20117 20117 42100 53000 37384
Tseng 2491 2484 2484 80200 90100 6148
Average 12914.26 12840.58 12859.00 32721.05 41200.00 24081.37
% Improvements
over VPR 7.0 46.37 46.67 46.60 -35.87 -71.08 –

† Note: Original thesis has provided data for these algorithms only in graphical format. Also, the code and
pseudo-code for these algorithms is unavailable and so we are unable to generate results for individual
circuits. Hence, we report the approximate values as read from the bar graphs.

speed-ups of 1.86, 2.62, and 3.30, respectively for ParaLaR.
If we compare the speed-ups obtained from ParaLarH with
ParaLarPD and ParaLaR, we observe that there is a slight
deterioration in the case of ParaLarH.

ParaLarH’s drop in speedups can be fixed by using
more number of threads. More threads would improve the
speedups of other algorithms as well but these algorithms

would not be able to improve the minimum channel width
and critical path delay, which ParaLarH does.

2) Using VPR 8.0

Here, we compare ParaLarH, ParaLarPD and VPR 8.0. Since
ParaLaR, RVPack and GGAPack2 have been designed to
work only with VPR 7.0, here we do not compare them.

VOLUME 4, 2016 7



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 6: Comparison of the critical path delay (in nanoseconds) between our proposed ParaLarH, ParaLarPD [6], ParaLaR [4],
RVPack [30], GGAPack2 [30], and VPR 7.0 [3] when experimenting on MCNC benchmarks using VPR 7.0.

Benchmarks
Circuits ParaLarH ParaLarPD ParaLaR RVPack GGAPack2 VPR

Alu4 6.69 7.30 7.01 17.52 13.20 7.50
Apex2 7.30 7.41 7.16 17.81 18.20 7.26
Apex4 6.51 7.08 6.73 13.90 15.05 6.92
Bigkey 3.32 4.01 4.44 10.05 10.10 3.53
Clma 15.42 15.46 16.31 36.80 41.05 15.08
Des 5.47 5.55 5.54 14.10 17.40 5.83
Diffeq 5.84 5.65 5.72 11.50 13.45 7.09
Dsip 3.19 3.62 3.45 8.50 10.02 4.20
Elliptic 7.53 10.83 10.91 27.40 23.10 13.98
Ex5p 6.32 6.94 6.28 14.20 14.50 7.69
Ex1010 12.00 14.57 12.71 23.50 32.40 10.05
Frisc 12.68 13.13 12.84 21.50 25.01 15.38
Misex3 6.19 6.49 6.68 15.05 14.50 6.08
Pdc 12.39 12.63 12.49 25.02 26.02 11.75
S298 11.67 12.71 12.08 20.03 22.50 16.62
S38417 9.11 10.44 10.03 22.04 24.95 8.82
Seq 6.00 6.14 6.18 17.60 17.90 6.09
Spla 10.23 10.43 10.69 24.05 26.50 10.11
Tseng 5.78 5.78 5.78 12.10 12.50 6.75
Average 8.08 8.74 8.58 18.56 19.91 8.98
% Improvements
over VPR 7.0 10.01 2.67 4.51 -106.56 -121.61 –

† Note: Original thesis has provided data for these algorithms only in graphical format. Also, the code
and pseudo-code for these algorithms is unavailable and so we are unable to generate results for
individual circuits. Hence, we report the approximate values as read from the bar graphs.

Benchmark Circuits

S
p

e
e

d
u

p
s

0

1

2

3

4

dsip bigkey tseng pdc apex4 clma misex3 ex1010 spla s298 ex5p frisc seq apex2 s38417 alu4 diffeq des elliptic

2X vs 1X 4X vs 1X 8X vs 1X

FIGURE 3: Speedups of each benchmark using ParaLarH when running it with 2, 4 and 8 threads.

Initially circuits are packed and placed using VPR 8.0 and
then routing is performed with the respective method.

We compare these algorithms using the metrics of con-
straints violation, the minimum channel width, the total wire
length, and the critical path delay. The speed-ups obtained
here are nearly the same as those using VPR 7.0. Hence, to
avoid repetition, we not discuss them here.

In Table 7, we compare the constraints violation in Par-
aLarH and ParaLarPD. As earlier, in VPR 8.0, there is no

concept of constraints violation because it does not formulate
the routing problem as an optimization problem. As evident
from this table, ParaLarH has the least constraints violation,
and perform the best.

The minimum channel width comparisons are done in Ta-
ble 8. On an average, ParaLarH and ParaLarPD give 31.98%
and 22.62% improvement over VPR 8.0, respectively.

The total wire length is compared in Table 9. On an
average, ParaLarH and ParaLarPD give 53.36% and 53.43%

8 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Benchmark Circuits

S
p

e
e

d
u

p
s

0

1

2

3

4

5

6

dsip bigkey tseng pdc apex4 clma misex3 ex1010 spla s298 ex5p frisc seq apex2 s38417 alu4 diffeq des elliptic

2X vs 1X 4X vs 1X 8X vs 1X

FIGURE 4: Speedups of each benchmark using ParaLarPD when running it with 2, 4 and 8 threads.

Benchmark Circuits

S
p

e
e

d
u

p
s

0

1

2

3

4

5

6

dsip bigkey tseng pdc apex4 clma misex3 ex1010 spla s298 ex5p frisc seq apex2 s38417 alu4 diffeq des elliptic

2X vs 1X 4X vs 1X 8X vs 1X

FIGURE 5: Speedups of each benchmark using ParaLaR when running it with 2, 4 and 8 threads.

improvement over VPR 8.0, respectively.
The average critical path delay comparison are done in

Table 10. On an average, ParaLarH and ParaLarPD give
13.89% and 9.61% improvement over VPR 8.0, respectively.

Overall, ParaLarH and ParaLarPD both perform substan-
tially better that VPR 8.0, with ParaLarH being the best.

B. EXPERIMENTS ON VTR BENCHMARKS
While experimenting on the VTR benchmarks, here, we per-
form comparisons between ParaLarH, ParaLarPD, and VPR
(VPR 7.0 & VPR 8.0 both) in two respective subsections
below. Since the experimental data of ParaLaR, RVPack,

and GGAPack2 for VTR benchmarks is not available, we do
not compare against them. Initially, circuits are packed and
placed with VPR (VPR 7.0 and VPR 8.0 as the context may
be) and then routing is performed with the respective method.

We compare these algorithms using the metrics of con-
straints violation, the minimum channel width, the total wire
length, and the critical path delay. The speed-ups obtained
here are nearly the same as those on the MCNC benchmarks.
Hence, to avoid repetition, we not discuss them here. The rest
of this section has two parts; first, where we use VPR 7.0 and
second, where we use VPR 8.0.

VOLUME 4, 2016 9



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 7: Comparison of the constraints violation between
ParaLarH and ParaLarPD when experimenting on MCNC
benchmarks using VPR 8.0.

Benchmark
Circuits

Absolute Constraints
Violation

ParaLarH ParaLarPD
Alu4 4.45 8.43
Apex2 5.23 12.32
Apex4 6.12 13.32
Bigkey 4.45 7.76
Clma 9.34 17.54
Des 5.23 10.43
Diffeq 5.34 11.65
Dsip 4.12 8.45
Elliptic 6.45 11.34
Ex5p 4.44 9.48
Ex1010 4.54 10.67
Frisc 7.53 14.45
Misex 4.43 10.21
Pdc 5.12 13.32
S298 4.45 8.32
S38417 5.12 10.23
Seq 4.23 8.76
Spla 6.23 13.65
Tseng 4.32 10.56
Average 5.32 11.10

TABLE 8: Comparison of the minimum channel width be-
tween ParaLarH, ParaLarPD, and VPR 8.0 when experiment-
ing on MCNC benchmarks using VPR 8.0.

Benchmark
Circuits Minimum Channel Width

ParaLarH ParaLarPD VPR 8.0
Alu4 32.45 36.43 50
Apex2 45.23 52.32 70
Apex4 40.12 47.32 64
Bigkey 16.45 19.76 36
Clma 71.34 79.54 88
Des 27.23 32.43 40
Diffeq 33.34 39.65 56
Dsip 22.12 26.45 38
Elliptic 52.45 57.34 72
Ex5p 44.44 49.48 72
Ex1010 48.54 54.67 70
Frisc 61.53 68.45 80
Misex 36.43 42.21 58
Pdc 65.12 73.32 88
S298 28.45 32.32 36
S38417 43.12 48.23 56
Seq 44.23 48.76 64
Spla 54.23 61.65 78
Tseng 30.32 36.56 56
Average 41.95 47.73 61.68
% Improvements
over VPR 8.0 31.98 22.62 –

1) Using VPR 7.0
In Table 11, we compare the constraints violation in Par-
aLarH and ParaLarPD. As earlier, in VPR 7.0, there is
no concept of constraints violation, and hence, we cannot
compare with it. As evident from this table, ParaLarH has
the least constraints violation, and hence, performs the best.

The rest of the comparisons are as follows:
• The minimum channel width: From Table 12, we can see

that ParaLarH and ParaLarPD give 19.08% and 4.15%
improvement over VPR 7.0, respectively.

TABLE 9: Comparison of the total wire length (in nanome-
ters) between ParaLarH, ParaLarPD, and VPR 8.0 when
experimenting on MCNC benchmarks using VPR 8.0.

Benchmark
Circuits Total Wire Length

ParaLarH ParaLarPD VPR 8.0
Alu4 4941 4929 10548
Apex2 7840 7824 17426
Apex4 5502 5469 11307
Bigkey 3529 3529 7759
Clma 42650 42654 85600
Des 6725 6717 16602
Diffeq 4363 4254 9958
Dsip 4064 4060 9866
Elliptic 14459 14453 30358
Ex5p 4854 4807 10667
Ex1010 19114 19100 43938
Frisc 17672 17670 35828
Misex 5228 5218 11987
Pdc 30144 30140 61179
S298 3909 3809 8389
S38417 15302 15303 37201
Seq 7502 7500 16309
Spla 19579 19553 39694
Tseng 2139 2139 6000
Average 11553 11533 24769
% Improvements
over VPR 8.0 53.36 53.43 –

TABLE 10: Comparison of the critical path delay (in
nanoseconds) between ParaLarH, ParaLarPD, and VPR 8.0
when experimenting on MCNC benchmarks using VPR 8.0.

Benchmark
Circuits Critical Path Delay

ParaLarH ParaLarPD VPR 8.0
Alu4 6.68 7.68 9.82
Apex2 7.79 7.84 9.70
Apex4 7.30 7.60 7.67
Bigkey 4.37 5.35 4.29
Clma 14.72 15.43 14.63
Des 5.87 6.47 6.86
Diffeq 6.08 6.25 7.74
Dsip 4.09 4.31 3.97
Elliptic 9.79 10.73 12.30
Ex5p 6.23 6.43 7.07
Ex1010 12.36 12.66 12.24
Frisc 11.12 11.49 13.86
Misex 6.00 6.15 8.11
Pdc 13.48 14.17 14.28
S298 11.62 12.30 14.65
S38417 8.32 8.32 11.22
Seq 6.68 7.19 7.88
Spla 10.59 10.59 11.26
Tseng 5.51 5.51 6.63
Average 8.35 8.76 9.69
% Improvements
over VPR 8.0 13.89 9.61 –

• The total wire length: From Table 13, we can see that
ParaLarH and ParaLarPD give 38.09% and 38.24%
improvement over VPR 7.0, respectively.

• The average critical path delay: From Table 14, we
can see that ParaLarH and ParaLarPD give 64.58% and
67.74% improvement over VPR 7.0, respectively.

Overall ParaLarH and ParaLarPD both perform substantially
better than VPR 7.0, with ParaLarH being better for the

10 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 11: Comparison of the constraints violation be-
tween ParaLarH and ParaLarPD when experimenting on
VTR benchmarks using VPR 7.0.

Benchmark
Circuits

Absolute Constraints
Violation

ParaLarH ParaLarPD
bgm 10.46 21.34
Blob_merge 6.56 14.23
bound_top 4.54 10.32
ch_intrinsic 4.23 8.56
diffeq1 4.12 19.66
diffeq2 4.32 11.21
LU8PEEng 9.68 19.87
LU32PEEng 13.68 19.42
mcml 11.32 36.31
mkDelay 5.21 11.42
mkPktMerge 4.56 12.67
mkSM 4.45 9.32
or1200 4.22 11.12
raygentop 5.89 11.67
sha 4.13 7.56
stereovision0 5.92 10.34
stereovision1 7.65 19.74
stereovision2 13.32 37.57
stereovision3 2.65 9.43
Average 6.64 15.80

TABLE 12: Comparison of the minimum channel width
between ParaLarH, ParaLarPD, and VPR 7.0 when experi-
menting on VTR benchmarks using VPR 7.0.

Benchmark
Circuits Minimum Channel Width

ParaLarH ParaLarPD VPR 7.0
bgm 90.46 101.34 116
Blob_merge 52.56 60.23 74
bound_top 40.54 46.32 60
ch_intrinsic 22.23 26.56 50
diffeq1 42.12 57.66 52
diffeq2 36.32 43.21 50
LU8PEEng 91.68 101.87 114
LU32PEEng 165.80 214.00 174
mcml 114.00 149.00 104
mkDelay 55.21 61.42 76
mkPktMerge 26.56 34.67 46
mkSM 36.45 41.32 56
or1200 56.22 63.12 74
raygentop 53.89 59.67 68
sha 42.13 45.56 50
stereovision0 43.92 48.34 62
stereovision1 97.65 109.74 102
stereovision2 149.32 173.57 154
stereovision3 14.65 21.43 34
Average 64.27 76.13 79.43
% Improvements
over VPR 7.0 19.08 4.15 –

minimum channel width and ParaLarPD being better for the
critical path delay.

2) Using VPR 8.0
In Table 15, we compare the constraints violation in Par-
aLarH and ParaLarPD. As earlier, in VPR 8.0, there is
no concept of constraints violation, and hence, we cannot
compared with it. As evident from this table, ParaLarH has
the least constraints violation, and hence, performs the best.

The rest of the comparisons are as follows:

TABLE 13: Comparison of the total wire length (in nanome-
ters) between ParaLarH, ParaLarPD, and VPR 7.0 when
experimenting on VTR benchmarks using VPR 7.0.

Benchmark
Circuits Total Wire Length

ParaLarH ParaLarPD VPR 7.0
bgm 354258 354251 624608
Blob_merge 43489 43483 82613
bound_top 15174 15129 30999
ch_intrinsic 1758 1751 4237
diffeq1 4563 4511 12009
diffeq2 3172 3125 8446
LU8PEEng 253039 253001 448756
LU32PEEng 1273984 1272597 2003675
mcml 795213 788607 1331742
mkDelay 72545 72425 121393
mkPktMerge 7639 7624 16019
mkSM 11529 11500 26310
or1200 27300 27291 54911
raygentop 13671 13670 29943
sha 10498 10497 21198
stereovision0 54899 54857 95071
stereovision1 111294 111282 184401
stereovision2 640826 640539 859954
stereovision3 268 229 797
Average 186356 185901 301026
% Improvements
over VPR 7.0 38.09 38.24 –

TABLE 14: Comparison of the critical path delay (in
nanoseconds) between ParaLarH, ParaLarPD, and VPR 7.0
when experimenting on VTR benchmarks using VPR 7.0.

Benchmark
Circuits Critical Path Delay

ParaLarH ParaLarPD VPR 7.0
bgm 8.05 8.05 26.52
Blob_merge 6.47 5.12 10.77
bound_top 7.53 4.52 8.00
ch_intrinsic 1.20 1.05 4.53
diffeq1 15.81 15.81 26.08
diffeq2 1.50 1.50 17.91
LU8PEEng 11.74 10.24 115.43
LU32PEng 27.52 27.65 115.14
mcml 30.8 23.43 79.65
mkDelay 8.65 8.96 7.29
mkPktMerge 3.91 3.91 4.57
mkSM 5.87 3.91 8.22
or1200 5.12 5.04 14.45
raygentop 4.44 3.54 6.66
sha 3.46 3.99 16.46
stereovision0 7.07 7.23 4.58
stereovision1 7.60 7.30 6.86
stereovision2 13.17 13.17 19.46
stereovision3 3.76 3.76 2.88
Average 9.01 8.21 25.45
% Improvements
over VPR 7.0 64.58 67.74 –

• The minimum channel width: From Table 16, we can see
that ParaLarH and ParaLarPD give 3.12% improvement
and 3.34% deterioration over VPR 8.0, respectively.
Here, negative sign indicate a deterioration.

• The total wire length: From Table 17, we can see that
ParaLarH and ParaLarPD give 41.74% and 40.36%
improvement over VPR 8.0, respectively.

• The average critical path delay: From Table 18, we

VOLUME 4, 2016 11



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 15: Comparison of the constraints violation be-
tween ParaLarH and ParaLarPD when experimenting on
VTR benchmarks using VPR 8.0.

Benchmark
Circuits

Absolute Constraints
Violation

ParaLarH ParaLarPD
bgm 2.01 10.12
blob_merge 1.54 8.32
boundtop 8.1 9.98
ch_intrinsics 2.12 5.02
diffeq1 4.21 6.32
diffeq2 1.65 13.98
LU32PEEng 36.87 40.86
LU8PEEng 0.24 8.14
mcml 2.12 3.21
mkDelayWorker32B 0.96 9.34
mkPktMerge 3.12 11.12
mkSMAdapter4B 1.96 6.1
or1200 6.92 6.78
raygentop 3.86 4.32
sha 8.12 4.12
stereovision0 2.04 2.32
stereovision1 2.98 5.87
stereovision2 0.92 11.79
stereovision3 1.92 3.32
Average 4.82 9.00

TABLE 16: Comparison of the minimum channel width
between ParaLarH, ParaLarPD, and VPR 8.0 when experi-
menting on VTR benchmarks using VPR 8.0.

Benchmark
Circuits Minimum Channel Width

ParaLarH ParaLarPD VPR 8.0
bgm 66.01 74.12 74
blob_merge 55.54 62.32 62
boundtop 44.1 45.98 50
ch_intrinsics 26.12 29.02 40
diffeq1 58.21 60.32 46
diffeq2 57.65 69.98 40
LU32PEEng 178.87 182.86 128
LU8PEEng 74.24 82.14 88
mcml 80.12 81.21 86
mkDelayWorker32B 64.96 73.34 64
mkPktMerge 39.12 47.12 36
mkSMAdapter4B 41.96 46.1 58
or1200 62.92 62.78 74
raygentop 49.86 50.32 62
sha 44.12 40.12 50
stereovision0 46.04 46.32 58
stereovision1 62.98 65.87 80
stereovision2 114.92 125.79 102
stereovision3 21.92 23.32 30
Average 62.61 66.79 64.63
% Improvements
over VPR 8.0 3.12 -3.34 –

can see that ParaLarH and ParaLarPD give 61.02% and
60.71% improvement over VPR 8.0, respectively.

Overall ParaLarH and ParaLarPD both perform substantially
better than VPR 8.0, with ParaLarH being the best.

V. CONCLUSIONS AND FUTURE WORK
In this work, we have three main contributions. First, we
make our earlier proposed ParaLarPD compatible for testing
on MCNC benchmark circuits using recently proposed VPR
8.0 (earlier we had experimented with VPR 7.0 only). Sec-

TABLE 17: Comparison of the total wire length (in nanome-
ters) between ParaLarH, ParaLarPD, and VPR 8.0 when
experimenting on VTR benchmarks using VPR 8.0.

Benchmark
Circuits Total Wire Length

ParaLarH ParaLarPD VPR 8.0
bgm 227698 231627 436804
blob_merge 37423 38014 73300
boundtop 12344 12498 26980
ch_intrinsics 1859 1921 4693
diffeq1 4074 4289 12840
diffeq2 2796 2943 10166
LU32PEEng 926132 945721 1484514
LU8PEEng 198681 206596 363246
mcml 494368 494368 875701
mkDelayWorker32B 140978 140552 195579
mkPktMerge 7617 7570 16760
mkSMAdapter4B 11666 11810 25590
or1200 27790 27768 57669
raygentop 13383 13531 32114
sha 9147 9627 21268
stereovision0 37172 38956 75570
stereovision1 71348 73945 148262
stereovision2 410669 435651 661327
stereovision3 236 243 942
Average 138704 141980 238069
% Improvements
over VPR 8.0 41.74 40.36 –

TABLE 18: Comparison of the critical path delay (in
nanoseconds) between ParaLarH, ParaLarPD, and VPR 8.0
when experimenting on VTR benchmarks using VPR 8.0.

Benchmark
Circuits Critical Path Delay

ParaLarH ParaLarPD VPR 8.0
bgm 8.58 6.93 26.69
blob_merge 5.42 5.57 10.78
boundtop 3.91 3.24 7.08
ch_intrinsics 1.80 1.43 4.08
diffeq1 2.11 1.50 22.66
diffeq2 1.35 1.73 19.22
LU32PEEng 27.71 33.73 110.81
LU8PEEng 11.89 11.52 108.47
mcml 31.39 31.39 83.87
mkDelayWorker32B 22.28 29.06 9.60
mkPktMerge 4.14 4.512 3.98
mkSMAdapter4B 3.01 3.08 6.67
or1200 4.29 4.97 15.03
raygentop 4.37 3.16 5.74
sha 3.91 4.81 14.14
stereovision0 5.65 5.65 4.41
stereovision1 9.26 8.05 5.84
stereovision2 35.68 27.86 17.98
stereovision3 0.37 0.37 2.96
Average 9.85 9.92 25.26
% Improvements
over VPR 8.0 61.02 60.71 –

ond, we adapt ParaLarPD for larger benchmark circuits of
VTR (earlier we had experimented with MCNC benchmark
circuits) using both VPR 7.0 and VPR 8.0, and perform
thorough evaluation.

Third, we improve the Lagrange relaxations process of
ParaLarPD via new Lagrange heuristics. We term new algo-
rithm ParaLarH. We test ParaLarH on both the benchmark
circuits (MCNC and VTR) and using both the VPRs (VPR

12 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

7.0 and VPR 8.0).
With experiments on both the benchmarks circuits (MCNC

and VTR), we observe that ParaLarH and ParaLarPD both
outperform VPR (VPR 7.0 and VPR 8.0) with gains as below.

• The minimum channel width improvements in Par-
aLarH and ParaLarPD are 22% and 12%, respectively.

• The total wire length improvements in both ParaLarH
and ParaLarPD are 45%.

• The average critical path delay improvements in Par-
aLarH and ParaLarPD are also almost same (37% and
35%, respectively).

We also observe that ParaLarH performs the best.
Next, we discuss the future work. First, in both the routing

algorithms (the above discussed ParaLarH and our earlier
published ParaLarPD), we use sub-gradient based methods
for the solution of BILP. Here, future direction involves
finding other more efficient algorithms for solving this BILP.
Second, we plan to work towards designing algorithms that
would completely remove the constraints violation. Third,
we plan to experiment on TITAN benchmarks as well [31].
TITAN benchmarks are larger than MCNC and VTR bench-
marks and are also used to evaluate FPGA architectures.
These benchmarks make use of heterogeneous resources
(RAM blocks and DSP), which is less common in other
benchmarks.

ACKNOWLEDGMENT
Kapil Ahuja and Akash Kumar would like to acknowledge
the support of The German Academic Exchange Service
(DAAD), Germany for support under the bilateral exchange
of academics program with grant number 91651117.

REFERENCES
[1] Jiang Yue, Chen Hongyi, Yang Xiangrui, Sun Zhigang, and Quan Wei.

Design and implementation of CPU & FPGA co-design tester for SDN
switches. Electronics, 8(9):950, 2019.

[2] Yu Hoyoung, Lee Hansol, Lee Sangil, Kim Youngmin, and Lee Hyung-
Min. Recent advances in FPGA reverse engineering. Electronics,
7(10):246, 2018.

[3] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien
Yu, Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin
Ahmed, Kenneth B. Kent, Jason Anderson, Rose Jonathan, and Vaughn
Betz. VTR 7.0: Next generation architecture and CAD system for FPGAs.
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
7(2):1–30, 2014.

[4] Chin H. Hoo, Akash Kumar, and Yajun Ha. ParaLaR: A parallel FPGA
router based on Lagrangian relaxation. In Proceeding of the 25th

International Workshop on Field-Programmable Logic and Applications
(FPL), pages 1–6, London, UK, 2015.

[5] Saeyang Yang. Logic synthesis and optimization benchmarks user guide:
version 3.0. In Microelectronics Center of North Carolina (MCNC),
Research Triangle Park, NC, 1991.

[6] Rohit Agrawal, Kapil Ahuja, Chin H. Hoo, Taun D. A. Nguyen, and Akash
Kumar. ParaLarPD: Parallel FPGA router using primal-dual sub-gradient
method. Electronics, 8(12):1439, 2019.

[7] Marshall L. Fisher. The Lagrangian relaxation method for solving integer
programming problems. Management Science, 27(1):1–8, 1981.

[8] Yuan Cao, Zixuan Zhang, Fanglin Cheng, and Shuai Su. Trajectory
optimization for high-speed trains via a mixed integer linear programming
approach. IEEE Transactions on Intelligent Transportation Systems,
23(10):17666–17676, 2022.

[9] David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. Faster
first-order primal-dual methods for linear programming using restarts and
sharpness. Mathematical Programming, pages 1–52, 2022.

[10] Hafiz A. U. Muqeet and Aftab Ahmad. Optimal scheduling for campus
prosumer microgrid considering price based demand response. IEEE
Access, 8:71378–71394, 2020.

[11] Abdulqader O. Hamadameen and Nasruddin Hassan. A compromise
solution for the fully fuzzy multiobjective linear programming problems.
IEEE Access, 6:43696–43711, 2018.

[12] Lucas Polo-López, Juan Córcoles, and Jorge A. Ruiz-Cruz. Antenna
design by means of the fruit fly optimization algorithm. Electronics,
7(1):3, 2018.

[13] Irvin J. Lustig, Roy E. Marsten, and David F. Shanno. Interior point
methods for linear programming: Computational state of the art. ORSA
Journal on Computing, 6(1):1–14, 1994.

[14] Pham D. Tao and El B. Souad. Duality in D.C. (difference of convex
functions) optimization. Subgradient methods. In Trends in Mathematical
Optimization: 4th French-German Conference on Optimization, pages
277–293. Springer, 1988.

[15] Qing Yang and Gang Chen. Primal-dual subgradient algorithm for dis-
tributed constraint optimization over unbalanced digraphs. IEEE Access,
7:85190–85202, 2019.

[16] Rohit Agrawal and Kapil Ahuja. CSIS: Compressed sensing-based
enhanced-embedding capacity image steganography scheme. IET Image
Processing, 15(9):1909–1925, 2021.

[17] Rohit Agrawal, Aditya A. Shastri, Kapil Ahuja, Antoine Perreard, and
Juniper Gujral. An Apache Giraph implementation of distributed ADMM
for solving LASSO problems. In Soft Computing for Problem Solving:
Proceedings of SocProS 2020, Volume 2, pages 547–556. Springer, 2021.

[18] Rohit Agrawal, Kapil Ahuja, Marc C. Steinbach, and Thomas Wick.
SABMIS: sparse approximation based blind multi-image steganography
scheme. PeerJ Computer Science, 8:e1080, 2022.

[19] Yurii Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical programming, 120(1):221–259, 2009.

[20] Berhanu Guta. Subgradient optimization methods in integer programming
with an application to a radiation therapy problem. PhD thesis, Technische
Universität Kaiserslautern, Kaiserlautern, Germany, 2003.

[21] Alexander Z. Zelikovsky. An 11/6-approximation algorithm for the
network steiner problem. Algorithmica, 9(5):463–470, 1993.

[22] Desiree M. Carvalho and Mariá C. V. Nascimento. Lagrangian heuristics
for the capacitated multi-plant lot sizing problem with multiple periods
and items. Computers & Operations Research, 71:137–148, 2016.

[23] Oliver G. Czibula, Hanyu Gu, and Yakov Zinder. Lagrangian relaxation-
based heuristic to solve large extended graph partitioning problems. In
M. Kaykobad and R. Petreschi, editors, WALCOM: Algorithms and com-
putation, Lecture Notes in Computer Science, volume 9627, pages 327–
338. Springer, 2016.

[24] Diabat Ali, Battaïa Olga, and Nazzal Dima. An improved Lagrangian
relaxation-based heuristic for a joint location-inventory problem. Com-
puters & Operations Research, 61:170–178, 2015.

[25] Kaj Holmberg, Martin Joborn, and Kennet Melin. Lagrangian based
heuristics for the multicommodity network flow problem with fixed costs
on paths. European Journal of Operational Research, 188(1):101–108,
2008.

[26] Samuel Deleplanque, Kedad S. Safia, and Alain Quilliot. Lagrangean
heuristic for a multi-plant lot-sizing problem with transfer and storage
capacities. RAIRO-Operations Research, 47(4):429–443, 2013.

[27] Bissan Ghaddar, Joe Naoum-Sawaya, Akihiro Kishimoto, Nicole Taheri,
and Bradley Eck. A Lagrangian decomposition approach for the pump
scheduling problem in water networks. RAIRO-Operations Research,
241(2):490–501, 2015.

[28] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and
routing tool for FPGA research. In International Workshop on Field
Programmable Logic and Applications, pages 213–222, London, UK,
1997.

[29] Yehdhih Moctar, Mirjana Stojilović, and Philip Brisk. Deterministic
parallel routing for FPGAs based on Galois parallel execution model. In
Proceeding of the 78th International Workshop on Field-Programmable
Logic and Applications (FPL), pages 21–25, Dublin, Ireland, 2018.

[30] Wang Yuan. Circuit clustering for cluster-based FPGAs using novel mul-
tiobjective genetic algorithms. PhD thesis, University of York, England,
2015.

[31] Kevin E. Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz.
Timing-driven TITAN: Enabling large benchmarks and exploring the

VOLUME 4, 2016 13



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

gap between academic and commercial CAD. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 8(2):1–18, 2015.

ROHIT AGRAWAL received his B.Tech degree
in Computer Science and Engineering from BIET
Jhansi, India; M.Tech degree in Computer Appli-
cation from Indian Institute of Technology (Indian
School of Mines), Dhanbad, India; and Ph.D. de-
gree in Computer Science and Engineering from
Indian Institute of Technology Indore, India. He is
currently an Assistant Professor in the Department
of Computer Science and Engineering at Madhav
Institute of Technology & Science (a government

institute), Gwalior, India. In the past, he visited TU Dresden (Germany),
Lancaster University (UK), and LU Hannover (Germany) as a guest re-
searcher. His research interests are at the intersection of Computer Science
and Mathematical Optimization. Especially, Optimization, Artificial Intel-
ligence, Machine Learning, Data Science, Image Processing, and Circuit
Designing.

KAPIL AHUJA received his B.Tech. degree from
IIT (BHU) (India), and double M.S. and Ph.D.
degrees from Virginia Tech (USA). Subsequently,
he was a Postdoctoral Research Fellow at the
Max Planck Institute in Magdeburg (Germany).
After holding Assistant Professor and Associate
Professor positions in Computer Science and En-
gineering at IIT Indore (India), he is currently a
Full Professor here. In the past, he has also been
a Visiting Professor at IMT Atlantique (France),

LU Hannover (Germany), TU Braunschweig (Germany), TU Dresden (Ger-
many), and Sandia National Labs (USA). At IIT Indore, he heads the
Mathematics of Data Science and Simulation (MODSS) research lab, with
research interests in Machine Learning, Network Science, Numerical Linear
Algebra, and Optimization.

DHAARNA MAHESHWARI received her B.Tech
degree in Computer Science from Indian Insti-
tute of Technology, Indore, India and she is cur-
rently doing her Masters in Computer Science
at Columbia University, New York. Her research
interests are Optimization and Natural Language
Processing.

UBAID SHAIKH received his B.Tech degree in
Computer Science and Engineering from the In-
dian Institute of Technology Indore, India.

He is currently a Compiler Developer at GSI
Technology working on LPython and LFortran
Compilers. In the past, he has interned at Devel-
opment Bank of Singapore (DBS Bank) and has
been a Google Summer of Code (GSoC) Fellow.

His research interests lie in the domains of
Computer Science, Optimization, Programming

Languages, Systems and Circuit Designing.

MOHAMED BOUAZIZ received his National En-
gineering Diploma from École Polytechnique de
Tunisie in 2021. During his studies, he was an
Erasmus+ visiting student at the University of
Trento, Italy, and received a scholarship to un-
dertake his graduation project at the Technical
University of Dresden, Germany. He works on
electronic design automation for reconfigurable
computing.

AKASH KUMAR (Senior Member, IEEE) re-
ceived the joint Ph.D. degree in electrical engi-
neering and embedded systems from the Eind-
hoven University of Technology, Eindhoven, The
Netherlands, and the National University of Sin-
gapore (NUS), Singapore, in 2009. From 2009
to 2015, he was with NUS. He is currently a
Professor with Technische Universität Dresden,
Dresden, Germany, where he is directing the chair
of processor design. His current research interests

include the design, analysis, and resource management of low-power and
fault-tolerant embedded multiprocessor systems.

14 VOLUME 4, 2016


	Introduction
	Background
	Proposed Approach
	Other Variations of our Heuristic

	Experimental Results
	Experiments on MCNC Benchmarks
	Using VPR 7.0
	Using VPR 8.0

	Experiments on VTR Benchmarks
	Using VPR 7.0
	Using VPR 8.0


	Conclusions and Future Work
	REFERENCES
	ROHIT AGRAWAL
	KAPIL AHUJA
	DHAARNA MAHESHWARI
	UBAID SHAIKH
	MOHAMED BOUAZIZ
	AKASH KUMAR


